Eiwitten of proteïnen vormen een grote groep moleculen, die bestaan uit ketens van aminozuren. Aanmaak van eiwit uit aminozuren vindt binnen iedere cel van alle soorten organismen plaats.

Eiwitten hebben verschillende functies: ze komen voor als bouwstoffen (celstructuren als het cytoskelet worden (mede) gevormd uit eiwitten), enzymen en afweerstoffen. Eiwitten zitten in hogere concentraties onder andere in peulvruchten, vlees, gevogelte, eieren, vis, zuivelproducten en noten.

Functies van eiwitten

Eiwitten hebben een grote diversiteit aan functies, met name op cellulair niveau. Een aantal belangrijke functies zijn:

  • Chemische omzettingen – Zulke eiwitten worden enzymen genoemd. Enzymen zijn verantwoordelijk voor de stofwisseling, waarbij voedingsstoffen worden omgezet in bouwstoffen en energie.
  • Structuur – een groot aantal eiwitten zorgt voor het in stand houden van dynamische structuren. Een belangrijk voorbeeld is het cytoskelet. Het cytoskelet geeft cellen structuur en vorm. Het cytoskelet is ook dynamisch, het kan ervoor zorgen dat de cel van vorm verandert, maakt de celdeling mogelijk en draagt ertoe bij dat sommige cellen zich kunnen verplaatsen.
  • Transport – verschillende eiwitten zijn betrokken bij het transport van stoffen in, uit en binnen de cel. Transport binnen de cel vindt onder andere plaats via het cytoskelet. Membraaneiwitten, bijvoorbeeld de natrium-kaliumpomp, zorgen voor het transport van ionen in en uit de cel.
  • Communicatie – sommige eiwitten zijn hormonen en zorgen voor de communicatie tussen cellen op afstand. Receptoren zorgen voor de communicatie tussen cellen en hun omgeving. Signaaleiwitten zorgen voor de communicatie binnen cellen.
  • Regulatie – cellen bevatten veel regelsystemen. Eiwitten spelen hier een belangrijke rol in, bijvoorbeeld door de structuur van andere eiwitten te veranderen (bijvoorbeeld door fosforylering)

Veel eiwitten hebben geen functie op zichzelf, maar maken deel uit van eiwitcomplexen.

Proteïnen en voeding

Voor zowel carnivoren als omnivoren vormen proteïnen een belangrijk deel van het dieet. In de spijsvertering van de carnivoor worden eiwitten afgebroken tot aminozuren, die dan verder gebruikt worden als bouwstof voor de aanmaak van lichaamseigen eiwitten en als brandstof.

Ook het menselijk lichaam gebruikt alle aminozuren die uit voedsel gehaald kunnen worden voor de aanmaak van lichaamseigen eiwitten en als energiebron. Bij een tekort aan bepaalde aminozuren worden deze door het lichaam zelf in de lever uit voorhanden zijnde aminozuren gesynthetiseerd. Dit geldt echter niet voor threoninevalinetryptofaanisoleucineleucinelysinefenylalanine en methionine: dit zijn essentiële aminozuren. Dit zijn aminozuren die uit voedsel gehaald moeten worden. Hoewel alle voedingsmiddelen deze aminozuren bevatten, bevatten ze elk andere hoeveelheden. Daarom kan het gedurende langere tijd eten van één enkel voedingsmiddel, rijk aan één bepaalde proteïne, leiden tot een tekort aan bepaalde essentiële aminozuren.

Een tekort aan ingenomen eiwitten leidt tot symptomen als vermoeidheid, haaruitval, verlies van pigmenten (normaal zwart haar kleurt rood), verlies van spiermassa, lage lichaamstemperatuur en verstoring van de hormoonspiegel. Ernstige proteïnedeficiëntie, enkel voorkomend bij uitgehongerde mensen, is dodelijk. Een plantaardig dieet levert voor een mens genoeg essentiële en niet-essentiële aminozuren, zolang de voeding gevarieerd is en de calorie-inname hoog genoeg is om aan de energiebehoefte te voldoen.

Een teveel aan opgenomen proteïnen wordt in het lichaam als energiebron gebruikt. Eiwitten worden dan afgebroken waarbij ureum wordt gevormd. Een echte overdaad aan proteïnen zorgt, net als proteïnedeficiëntie, voor problemen: overreactie van het immuunsysteem, overbelasting van de nieren met mogelijk nierfalen tot gevolg, een ontregelde lever die toxische residuen produceert, en verlies van beenmassa door een verhoogde zuurgraad van het bloed. Verder is een te hoge eiwitinname gelinkt aan obesitas.

Proteïnen kunnen aanleiding geven tot allergische reacties en allergieën. Dit komt doordat de structuur van elke proteïne (licht) verschillend is, zodat sommige proteïnen een allergische reactie kunnen uitlokken, terwijl andere volledig veilig zijn. Zo zijn sommige mensen allergisch voor caseïne (een melkproteïne), gluten (eiwitten in graangewassen), bepaalde proteïnen die gevonden worden in pindanoten of weekdieren. Allergieën voor meerdere proteïnen bij dezelfde persoon zijn zeer zeldzaam.

De eiwitbehoefte verschilt tussen iemand die wel sport en iemand die niet sport. Volwassenen die niet sporten hebben 0,8 gram per kilogram lichaamsgewicht nodig. Sporters die twee keer of vaker aan cardio doen komen op 1,4 gram per kilogram lichaamsgewicht en krachtsporters komen op 1,8–2,0 gram per kilogram lichaamsgewicht uit.[1]

Geschiedenis

De eerste keer dat de term proteïne, wat ‘van eerste orde’ betekent, werd gebruikt, was in een brief van Jöns Jacob Berzelius aan Gerardus Johannes Mulder op 10 juli 1838:

Le nom protéine que je vous propose pour l’oxyde organique de la fibrine et de l’albumine, je voulais le dériver de πρώτειος, parce qu’il paraît être la substance primitive ou principale de la nutrition animale.

Vrij vertaald betekent dit:

De naam ‘proteïne’ die ik voorstel voor het organisch oxide van fibrine en albumine, leid ik af van het Griekse woord πρώτειος, omdat het de primitieve substantie of het hoofdbestanddeel van dierlijke voeding lijkt te zijn.

Onderzoek naar eiwitten en hun eigenschappen begon omstreeks 1800 toen wetenschappers de eerste sporen ontdekten van een op dat moment onbekende klasse organische verbindingen. Sindsdien is de kennis er enorm op vooruitgegaan en is het besef gegroeid dat deze verbindingen onmisbaar zijn voor nagenoeg alle levensprocessen.

Myoglobine was het eerste eiwit waarvan de structuur door röntgendiffractie werd opgehelderd door Max Perutz en Sir John Cowdery Kendrew in 1958. Voor deze prestatie kregen ze de Nobelprijs voor de Scheikunde.